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Certain features of the chemist's molecular structure model, viz. "size" and 
"shape",  are retrieved even in the best non-adiabatic variational calculations 
thus far carried out for ground states of H~- and H> Those features do not 
conflict with the full symmetry of exact molecular eigenstates, once they are 
properly understood as correlation effects. 
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1. Introduction 

Recently, Woolley [1-3] has challenged the association of the "molecular struc- 
ture"  concept to the exact molecular eigenstates (ME) of the complete non- 
relativistic molecular SchriSdinger equation. "Molecular structure has to be 
associated to those intrinsically t ime-dependent quantum states for which the 
identification between classical and quantum configurations can be made, since 
only then is it valid to relate notions of molecular structure to maxima in the 
molecular wave functions (wfs) in the position representat ion" [2]. Thus a ME 
"cannot  have extension in space and t ime" [1, 2]. Two new important works, 
dealing with the same subject, have recently appeared. Bader [4], with very simple 
qualitative arguments, has claimed that the molecular structure concept may be 
recovered beyond the Born-Oppenheimer  (BO) [5] approximation. Claverie and 
Diner [6] have argued further that even complete MEs may display certain 
features of the chemist's molecular structure concept, through correlation effects. 
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Particularly, for complete ground MEs (J -- 0), they claim that one may recover, 
through certain nuclear correlations, the rough molecular size that chemists 
associate to molecules; but they argued that one cannot retrieve in these kinds 
of states the also commonly accepted non-spherical molecular shape effects. 

2. The Molecular Structure Model  

Before any argumentation, we must first agree about a very definite "molecular 
structure" concept. Following Coulson [7] one may first define the concepts of 
size and shape of molecules (we will be dealing only with ground states of diatomic 
molecules): 

Size - the boundary region around the point-like nuclei - separated by distances 
of the order of Re, the "equilibrium internuclear distance" - with, say, a 99% 
chance of finding an electron inside, irrespective of the others. This information 
is imbedded in the famous one-electron density, p(r, R) [8], in which r is the. 
electronic position and R the internuclear distance. 

Shape - the particular shape displayed by p(r, R), at punctual nuclear arrange- 
ments around Re. 

As we will be dealing only with ground ( J=0)  MEs, the coordinate system was 
chosen so that p does not display explicitly the "molecular axis" (the axis 
containing the two nuclei) orientation, r, throughout this work, is intended to 
depend upon such an orientation (given by the unitary vector, R/R) ,  i.e. the 
coordinate system is "rotating",  with the molecular axis being one of the 
"rotat ing" axes. 

Partially inspired by an important distinction made by Claverie and Diner [6], 
two different models of "molecular structure" may be proposed: 

Model A (or the "static" model) - one retains only the "static" (i.e. in the sense 
of a stationary distribution) shape and size effects of the mono-electronic prob- 
ability density mentioned above plus the "point-l ike" nuclear behavior. Fig. 1 
displays a common picture of such a density in adiabatic calculations. 

Model B (or the "dynamical" model) - it amounts to the above "static" model 
plus "dynamical" (in the sense of a non-stationary distribution) ingredients, viz. 

Fig. 1. Schematic surfaces of pAD (r, R) = constant for the 
ground state of H~; R =Re = 2 Bohr 
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the rovibrational motion of the quasi-rigid nuclear framework followed instan- 
taneously by the electronic "cloud" of Fig. 1, for example. Model B constitutes 
what can be named the classical molecular structure concept of quantum 
chemists. 

As Claverie and Diner [6] forcefully argued, these dynamical ingredients of model 
B make it, right from the start, an inappropriate model for describing exact MEs 
and we will put it aside in this short communication. 

On the other hand, it is worth noting, at least within the BO approach, that model 
A displays the famous chemist's shape-stability connection: particular (and 
practically equal) electronic clouds "looking" to nuclei with R ~ Re are strongly 
preferred in energeticaI terms. 

Certain questions may be addressed now: 

(2.1) Inspecting the best molecular non-adiabatic ground state calculations thus 
far carried out, how much of model A can be retrieved? 

(2.2) In case model A fully persists in such calculations how can its non-spherical 
shape features be rationalized in a purely non-adiabatic language? Are they in 
accordance with the full symmetry of complete ground MEs? 

Sects. 3 and 4 are intended to answer these two questions. 

3. Two " W o r k e d "  Examples :  H + 2 and H2 

We are going to see that molecular size and shape effects - in the sense of model 
A - are retrieved even in the most accurate non-adiabatic calculations thus far 
carried out for ground states of H~- and H2. 

We will align four argumentation steps; the fourth one will be conclusive. 

(3.1) Following ordinary probability theory, Hunter [9, 10] and Hunter and 
Bishop [11] have shown that exact MEs (consider center of mass (CM) factorized 
out) may be exactly factorized in the product form: 

~(r, R) =f(R)  �9 &(r[R) (1) 

where q~ is intended to describe a J--0 eigenstate; now r involves all (not one) 
electronic positions, but the remarks of Sect. 2 persist, f (R)  is the nuclear marginal 
amplitude and & (fiR) is the electronic conditional amplitude for a given R and 
a given orientation of molecular axis (see also the interesting paper by Wilson 

A D  [12]). Consider now the BO vibrational, f,m (R), and electronic, ~bAD(r, R), wfs, 
where n and m represent, respectively, the electronic and vibrational quantum 
numbers. We can see that the two factors appearing in (1) are, respectively, the 
formal analogs of these two adiabatic wfs [11], despite physical and possible 
numerical differences. It is worth noting that the product form (1) is not restricted 
only to adiabatic states, conversely to what seems commonly suggested in the 
literature. 
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(3.2) The exact marginal amplitudes fn,. (R) (we introduce here the same indices 
of adiabatic states for a mere comparative purpose among exact MEs and its 
corresponding adiabatic counterparts), are obtained from a reduced Schr6dinger 
equation containing a pseudo potential U,,,(R) defined by: 

U~, (R) = (4m.(rlR)H]&.,.(rlR))r/(O.,.(rlR)l&n,.(rlR))r (2) 

where index r means "integration with respect to r". Note that U ~ ,  just like 
A D  &nm(r[R) and conversely to the adiabatic potential curve, E ,  (R), depends also 

on the "vibrational" index (we keep on using also the adiabatic terminology for 
the sake of simplicity); this is an indication that the molecular spectra cannot be 
decomposed i.e. the energy levels cannot be rigorously expressed as a sum of 
strictly independent electronic, vibrational, and rotational energy terms [9]. Now 
the nuclei "see" the exact instantaneous electronic coulombic field, not an 
averaged electronic field. 

Particularly, in very accurate non-adiabatic treatments for H~- [11] and H2 [13] 
it was shown that the ground "potential" Uoo(R) is approximately equal to its 
adiabatic counterpart, Eo Am(R). Ref. 13 offered strongly convincing arguments 
showing that U0m(m # 0) is heavily different from Eo Am for certain values of R. 

(3.3) Refs. 11 and 13 plus Kolos [14] and Wolniewicz [15] have shown for H~ 
and H2: 

2 A D  2 [fore(R)] =]fom (U)l 

at least for the lowest "vibrational" non-adiabatic levels (from now on, fnm(R) 
and 0nm (r[R) will represent quasi-exact calculated amplitudes). Thus, particularly 
for H~ and/-/2, [foo(R)l 2 "puts" the nuclei exactly where chemists always have 
put them for 55 years. In other words, nuclei persist strongly "confined" around 
2 Bohr in H~ and 1.4 Bohr in / /2 ;  these privileged non-adiabatic values will 
be named with the same adiabatic symbol, Re. This confinement amounts to a 
strong "localization" effect in the inter-nuclear distance, R, a correlation effect 
responsible for the nuclear "point-like" behavior-relative to electrons - in these 
molecules. 

(3.4) From a practically exact non-adiabatic treatment for H~- [16] plus steps 
(3.1), (3.2), (3.3), we may conclude (Re = 2 Bohr): 

1%o(r, 2)1~/[foo(2)12 = Id, oo(r, 2)12 ~ [4'oaD (r, 2)12 (3) 

I? [%o(r, U)lZdR = Io Ifoo(R)12100o(r, u) l  2 dR 

= g(r) ~ loAD(r, 2)12 (4) 

where q%o is the Bishop's ground state wf. Note that as H~ contains only one 
electron: ]0oo(rlR)2 = ooo(!", R). Both in (3) and (4) one practically recovers the 
same electronic "shape", ]OoaD(r, 2)] 2, of adiabatic calculations; but in g(r) the 
internuclear distance has been integrated out. It must be stressed that in (4) only 
integration with respect to R was carried out, not with respect to the molecular 
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axis orientation. It is also worth noting that the quasi-equality in (4) could be 
expected on purely qualitative grounds when one considers that foo(R) is a 
quasi-delta function, strongly peaked around 2 Bohr. 

Combining (3) and (4) it may be concluded that the electron is strongly correlated 
with nuclei along the molecular axis; more specifically, with the nuclei when they 
are found around 2 Bohr from each other along such an axis. This gives us a 
three-body correlation effect. In other words, in what concerns its R-dependency 
we have I~0o(r, R)[2 ~-0, except if R ~ 2  Bohr. In so far as the non-adiabaticity 
of such calculations can be pushed today, this is the quantum basis 1 for the 
molecular shape effects - in the sense of model A,  which is fully retrieved here - in 
MEs of one and two electrons stable molecules: a strong dynamical stabilizing 
intramolecular correlation effect, i.e. an effect imposed by the particular Hamil- 
tonian of those systems. On the other hand, the additional presence of electrons 
of parallel spins would merely provoke the appearance of the other crucial 
shape-making correlation: the Pauli's kinematical correlations. 

These highly favoured - in probabilistic terms - shape-making correlations may 
also be formally related to the sharp minimum region of the non-adiabatic 
"potential" U0o(R) (see 3.2) around 2 Bohr. This correspondence completes the 
strong formal similarities of shape effects in the Bishop's quasi-exact treatment 
with adiabatic shape effects, i.e. one recovers even at this very accurate level the 
above mentioned "shape-stability" connection (Sect. 2). 

Note however that U0o(R) (Eq. 2) is distinct from the non-adiabatic quantity 
suggested by Wilson [12], Eelec(R). Both are intended to be calculated with the 
same c~nm(rlR), but the former "potential" involves the exact Hamiltonian" 
whereas the latter involves only the "electronic Hamiltonian", /-/el. This pro- 
cedure of Wilson is still problematic, at least in conceptual terms, because it 
envisages R as a c-number, not as a true quantum variable (just like in the BO 
approach). 

4. Full Delocalization Versus Localizing Correlations in MEs 

Once molecular size and non-spherical shape effects imbedded in Bishop's quasi 
exact wf were properly understood as correlation effects, one may conclude that 
these effects do not conflict with: (i) rotational invariance requirements for the 
J = 0 MEs; (ii) translational invariance requirements for the MEs. 

(4.1) In the above discussed shape-making correlations the molecular axis plays 
the role of a mere correlation axis; such correlations do not create a preferential 
or "frozen" orientation in space: the orientation of that axis in space is fully 
isotropic ("fully delocalized") in accordance with the null angular momentum of 
ground MEs. This explains how such an isotropic distribution of molecular axis 
orientation may co-exist with non-spherical (many-body correlation) shape 
effects, without hurting the rotational symmetry of J=O MEs. 

1 Note that it is possible that even very accurate sets of non-adiabatic variational wfs are not suited 
for expanding exac t  MEs. But we think that this kind of limitation does not prevent us from labelling 
such treatments as "fully quantum" [17]. 
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(4.2) The possibility of co-existence of "full delocalizations", required by the 
translational symmetry in atomic and molecular eigenstates, and "localizing 
correlations", was correctly pointed out by Claverie and Diner [6]. W.e would like 
to extend a bit further their argumentation, both in conceptual and observational 
terms, utilizing a very simple example. Consider the hydrogen atom with its six 
positional degrees of freedom in its ground state (Is). The position vectors for 
electron and nucleus may be represented by re and I",. Due to translational 
invariance the ls  state may be factorized in: ~ ls  -- exp ( - i P .  R/h) .  ~bls(r), where 
P is the center of mass (CM) linear momentum, R = (Mr, + mre)/(M + m) is the 
CM position vector and r=lre-rpl is the relative distance between the two 
particles. Now, as a consequence of the translational symmetry; necessarily 
present in atomic and molecular eigenstates, the particles' positions are "fully 
delocalized", i.e. it is equally probable to find each particle - regardless of the 
other - anywhere in space (find the respective marginal densities for re and rp and 
verify that they are constants). In the second set of coordinates one finds five 
"fully delocalized" degrees of freedom: the three CM coordinates (a consequence 
of the translational symmetry) and two angle variables (a consequence of the 
rotational symmetry in a state with null angular momentum) and a "localized" 
degree, r, with its well-known maximum at the "first Bohr orbit". As we have 
been speaking thus far independently of any act of measurement,  we cannot 
associate to the "full delocalization" in space a greater or lesser rank of 
"actuality" as regards, for instance, the "point-l ike" protonic behavior. All these 
"propert ies"  are equally "potential"  (in the sense of Heisenberg [18, 19]). On 
the other hand, all possible positional details above mentioned - full delocaliz- 
ation in each particle position, full delocalization in R and two angles, localization 
in r, etc. - will be fully retrieved or "actualizable" in the same complete eigenstate, 
once one is able to measure the single distribution Iqslsl 2 (with a proper  position 
measuring device, which in particular strongly "confines" the system's particles 
to a much greater extent [20] as compared with the spreads or "uncertainties" of 
localized degrees of freedom - like r - in the system's wf before any measuring act). 

5. Concluding Remarks 

In so far as the non-adiabaticity of present calculations can be pushed today, the 
model A of molecular structure persists, at least in ground states of H~- and/-/2. 
The achieved shape-making correlations do not hurt any symmetry of complete 
MEs, even if one considers J=O eigenstates. It is perfectly reasonable to expect 
the extension of such results to the ground states of the common stable diatomic 
molecules, just as has been believed for 55 years. For certain polyatomic systems, 
at least, even ground states seem to display nuclear "large-amplitude vibrations", 
i.e. nuclei do not exhibit fully point-like correlations in all their famous 3N-6 
"internal"  degrees of freedom. In this case one cannot even retrieve model A of 
molecular structure in such states. 

Acknowledgements. We thank Dr. Toledo Pisa for lengthy and healthy suggestions and Drs. Roy 
Bruns and Ricardo Ferreira for constant stimulations. This work has been financially supported by 



Molecular Shape Effects 235 

the Commissfio de Aperfeigoamento do Pessoal Superior (CAPES) and Conselho Nacional de 
Desenvolvimento Cientffieo e Tecnol6gico (CNPq). 

References  

1. Woolley, R. G.: Adv. Phys. 25, 27 (1976) 
2. Woolley, R. G.: J. Am. Chem. Soc. 100, 1073 (1978) 
3. Woolley, R. G.: Isr. J. Chem. 19, 30 (1980) 
4. Bader, R. F. W., Tal, Y., Anderson, S. G., Nguyen-Dang, T. T.: Isr. J. Chem. 19, 8 (1980) 
5. Born, M., Oppenheimer, J. R.: Ann. Phys. 84, 547 (1927) 
6. Claverie, P., Diner, S.: Isr. J. Chem. 19, 54 (1980) 
7. Coulson, C. A.: The shape and structure of molecules. Oxford: Clarendon Press 1973 
8. Smith, V. H., Absar, I.: Isr. J. Chem. 16, 87 (1977) 
9. Hunter, G.: Intern. J. Quantum Chem. $8, 4 t3  (1974) 

10. Hunter, G.: Intern. J. Quantum Chem. 9, 237 (1975) 
11. Bishop, D. M., Hunter, G.: Mol. Phys. 30, 1433 (1975) 
12. Wilson, E. B.: Intern. J. Quantum Chem. S13, 5 (1979) 
13. Czub, J., Wolniewicz, L.: Mol. Phys. 36, 1301 (1978) 
14. Kolos, L., Wolniewicz, L.: J. Chem. Phys. 41, 3674 (1964) 
15. Wolniewicz, L.: J. Chem. Phys. 45, 515 (1966) 
16. Bishop, D. M., Cheung, L. M.: Intern. J. Quantum Chem. 15, 517 (1979) 
17. Tostes, J. G. R.: Chem. Phys. Letters 68, 183 (1979) 
18. Bohm, D.: Quantum theory. Englewood Cliffs, N. J.: Prentice-Hall 1951 
19. Ballentine, L. E.: Rev. Mod. Phys. 42, 358 (1970) 
20. Land~, A.: Am. J. Phys. 37, 541 (1969) 

Received November 3, 1980 


